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We study the properties of the solutions of one two-frequency system in the
whole space, We establish the correspondence between its solutions and the
phase trajectaries of an autonomous second-order system obtained from the
original one by using its group properties, The criginal system can be weated
as a model for the study of the phenomena taking place in muitifrequency sys-
tems under resonance, This paper is closely related to the investigations in [1],

1, We consider the following autonomous system of differential equations:
dz,/dt =324, dzg/dT = (2,% + 2,%) (B2, + az,)

dzy /3T = 24, dz, /dT = (2,° + 22) (Bz; — azy) (1.1)
@+ B* = 0)

System (1,1) is evolutionary and describes the behavior of the original systems at times
t ~ O (Ve'). Here system (1.1) will be transformed to 2 form which permits us to
investigate it in the whole phase space, By a direct check we convince ourselves that
(1.1) is invariant relative to a group of ramsformations, namely, simultaneous rotation
through angle & in the ( 2,2, )= and ( 2,33 )-planes, Consequently, the number of un-
known functions in (1.1) can be diminished by one [2], for which we need to find the
invariants of the infinitesimal operator of the group and to adopt them as the new vari-
ables, For the group indicated the operator and its invariants have the form
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We introduce the new unknown functions
e—————— 2123 —~ 2324
——— — 2 2 a3 T T 2
r =V212 -+ 222, p= st -+ 2% tgo Z124 + 2223 (1 )

For the mapping of space Z into the space of r, p, ¢ to be single-valued we set
r>0,0>0 9= [0, 2n]. Then,if r (T) or p (T) vanish at some instant, @ (7)
changes by 1 by a jump at this point, Transformation (1. 2) is continuous at the remain-
ing points of the phase space, In the new variables system (1, 1) is invariant relative to
the following group of dilations: ’

r=hr, p=Ap, TU=AW (>0
We introduce new variables R = p / r®, dt = rdv and we pass to the Cartesian coor-
dinates z = R sin ¢. y = R cos ¢. Then system (1, 1) takes the form

dz/dt = o — 3zy, dy/dt =p -+ 2* —2° (1.3)
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Thus, as a corollary of systemn (1. 1) we have obtained the second-order system (1, 3)
whose phase trajectories are investigated below by standard methods.

2. If in system (1, 3) we make a scale transformation of the variables z = z, z’,
Y = Yy, t = t,t’, then by an appropriate choice of the constants T, Jx. Ix we can
decrease the number of parameters in the right hand side of (1. 3) to one, Therefore,
below, in those cases when this is convenient, instead of the ¢ and 3 occurring in (1.3)
we shall use the notation sin ¥ and cos ¥. We note that system (1. 3) remains invari-
ant under the substitution £ — (— 1), y = (— ¥), ¢ = (— f). Comequently, the
phase trajectory pattern is symmetrical about the origin, but the direction of motion
along symmetric trajectories is different, therefore, if a singular point is stable, the one
symmetric to it is unstable,

Anpalysis shows that two singular points are located in the finite part of the plane for
all values of @ and B (a? 4 B? == 0),and for @ > 0 the singular points lie in the
first and third quadrants, while for a << 0 , in the second and fourth quadrants, A sin-
gular point located in the upper part of the phase plane is always stable, while in the
lower part this point is unstable, Depending on the values of parameter p = [0, 2n]
the singular points are of the following types: for P & [0, Vo) and Y & (21 — Py,
2n] they are nodes, for Y = P, and P = 21 — §, they are logarithmic nodes, for
Y & (by, 7) and $ e (7. 2n —p,) they are foci, and for .= 7 they are centers,
Here , = arctg (6} 6/47) = 18°,

On the ( zy )~plane, for any value of { the singular points are located on the closed

oue 4yet + 5zo’Ye® + zot =1

swrounding the origin, moreoves, for | yo| > 2 VEizo| the singular point is a node,
for] yo | = 28| z,| it is 2 logarithmic node, for | Yo | << 21/ 6| 2o | itis a focws,
and for Y, = 0 itis a center, The points at infinity are not stationary singular points
for system (1, 3), but for any value of parameter 1 there exists a unique ajectory pas-
sing through the point at infinity located at the "end" of the y -axis. When sin ¥ == 0
this phase trajectory is asymptotically representable, as y — —- oo, by the formula

z = (siny) /Sy 4+ O (1/ ¥ (2.1)

For sin ¢y = O this trajectory coincides identically with the y -axis,

The study of the singular points allows us to obtain the phase trajectory pattern only
locally in the neighborhood of these points. It is convenient to begin to ascertain the
behavior of the phase trajectories on the whole plane with the case y = n which cor-
responds to @ = (), § << 0. In this case the general integral of system (1. 3) has the

form 2y — B2 = ez (2.2)

From (2. 2) it follows that in the case \p = 7 the phase plane zy of system (1.3) is
entirely filled by closed nested curves surounding the singular points, The ¥ -axis is a
closed trajectory passing through the point at infinity, In Fig, 1a we show the qualita-
tive behavior of the phase trajectories in this case (recall that the trajectories are sym-
metric about the origin, but that the directions of motion on symmetric ajectories are
opposite),

In the general case of == nt system (1. 3) is not integrable, and to construct its full
phase pattern it is necessary to clear up the question of the existence of limit cycles in



On nonlinear perturbations under resonance 29

it [3], From the nature of the singular points of system (1. 3) it follows that any of the
limit cycles, if they exist, can surround only one of the singular points, There will not
automatically be limit cycles around a singular point if we succeed in showing that the
Qajectory passing through the point at infinity tends to this singular point as ¢ — 4

Fig, 1

or as ¢— — c<. To prove this we apply a method based on the use of Liapunov function
which we will construct using the general integral (2. 2) found for ¥ = n. Let an equa-
tion H (z, y, ¢) = 0 yield a family of simple closed nonintersecting curves surrounding
a singular point and filling up some region G. Let z = z (¢), y = y (t) be a wajectory
located in ¢. We consider the function H (z (), y (1), ¢). If its derivative computed
relative to system (1. 3) turns out to be negative definite in G. then any wajectory fal-
ling into this region tends to the singular point as ¢t — -+ ec. The proof will be complete
if we show that the trajectory passing through the point at infinity falls into G.

Let us set o > 0, then one of the system's singular points lies in the first quadrant,
If in (1. 3) we translate the origin to the singular point, we obtain

dz" / dt = —3ygz” — 3y" — 32"y 2.3)
dy” / dt = 22" — 4yoy" + ="t — 2y

Here y, > 0 is the ordinate of the system's singular point, For y, = U system (2, 3) has
the general integral .
H=+2"+y?+3h=c@+1)" (33

This family of closed nonintersecting curves surrounds the origin and fills the halfplane
z” > — 1. Let us find the total derivative of X" relative to Eqgs, (2. 3),

dH"  —2ua(z"+2) (2" + 2y

W= = -
at (-1

Obviowsly, W< 0 for 2" > — 1, y € (— =¢, <). By the same token we have shown
that any wajectory of system (1. 3) falling into the right halfplane tends to the singular
point, From formula (2,1) it follows that the trajectory passing through the point at
infinity necessarily falls into the right halfplane, The proof of the absence of limit
cycles in system (1, 3) when ¢ == 1 is completed,

We can now describe the pattern of the behavior of the phase wajectories of system
(1.2), As t — -+ >c all wajectories approach the singular point located in the upper
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halfplane, while as ¢{ =~ — oc, they approach the point in the lower halfplane, Figure
1b shows the behavior of the trajectories for = 0, Figure 1c shows the general form
of rajectory behavior in the case of 2 node, The behavior of the phase trajectories
when the singular points are foci is shown in Fig, 1d. The number of zeros of function

Y (¢) corresponding to an arbitrarily taken phase trajectory differs by no more than four
from the number of points of intersection with the z -axis of the phase wajectory passing
through the origin, From linear theory we can obtain an estimate for the number of
intersections with the z-axis of the integral wajectory passing through the origin,

N 2 gyl w v

Let us describe the behavior of functions z (¢). y (£) when the singular points of sys-
tem (1, 3) are not centers, In this case all wajectories going from one singular point to
the other and remaining in the finite part of the phase plane are defined for ¢t &= (— o0,
oc) and have the coordinates of the singular points as their limit values, The functions
z (t), y (t) comresponding to the phase wajectory passing through the point at infinity
(it is not a singular point for system (1. 3)) have, in a neighborhood of this point, the fol«
lowing asymptotic representation

y~1ta(t—t97, T~ %5 a (& —to (2.4) "

Consequently, they also are defined for ¢ & (— oc, o0), and v (?) has a first-order
poleat t = ¢, .

8, Fromsystem(1.3) we establish the connection of the functions z, (T) and z, (T)
of system (1.1) with the functions z (¢) and ¥ () whose behavior is now known, Con-

sider the {dentity (2.2 + 2%) 24 = (2,24 + Z,33) 2y — (2425 — Z43¢) 2o

1t is valid for atbitrary z,, z,, 24, Z,. If, however, these functions are solutions of system
(1.1), then with the aid of the transformations considered in Sect,1 we can obtain the

following equation for z, (¢):
8 1 (&) dz,/dt =yz; +zV r* — z,*
The general solution of this equation has the form

t
z, = r(f)sin (ﬁz (8)d® + ) (3.1)
t
Analogously, from the identity _
(2,2 + 2a2) 25 = (5124 + ZoZs) 22 + (2155 — 2,24 %,
we obtain

1
z, = r(t) cos (g.z: (0)dd + c1> (3.2)
]

From formulas (3, 1), (3. 2) it follows that the behavior of the solutions of system (1.1)
is completely determined by the functions z (¢) and y () given by (1.3) if we know
the connection between ¢ and T, defined by the equation dt = rdr.

Knowing the behavior of ¥ (f) from (1. 3), we can ascertain the nature of r (2),

r@) =roexp ({y (920 ) (3.3)
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Hence it follows that for bounded y (¢) the function r (f) is strictly positive, while if

Y (?) has a singularity of form (2,4) at ¢ = ¢, ,then r (f) ~ }/ [ ¢ — ¢, in the neigh-
borhood of this point, From (3. 8) it follows that for ¥ (¢{) == const the function r (?)
grows exponentially as ¢ — —- oc. It is obvious that r (¢) has local extrema at the
points where the phase trajectory intersects the x-axis,

The function t (f) is determined by the formula
!

dé
T = §T@. (3.4)

Hence it follows that 7 (¢) defined for ¢ & (— oo, o), increases strictly monotonic-
ally, and, if ¥ (f) 5= const, the function 7 (f) is bounded, where its range of variation
is of order L ~ 1/ y, (yo > 0). In the neighborhood of the point ¢ = ¢,, where
r (t) vanishes, we have T ~ - /|t — ¢,|. Consequently, the inverse tunction ¢ (T)
defined on a finite interval, is monotonic and unbounded, Hence if follows that if
y (#) == const, the composite function r [¢ (t)] is nonnegative, is defined on a finite
interval, becomes -~ ~c (these are first orderpoies) on the boundaries of its domain,
and has as many local extrema as the times the phase trajectory y (f) intersects the
z-axis, If r (t,) = 0, in the neighborhood of the point © = 1, we have r (1) ~
| T — 7o

If y(2) = yo = const, the function r (T) can be written out in explicit form,

r(t) =ro/ (1 — yoret)

As we see from formulas (3, 2) and (3.1) the function r (T) describes the change in the
amplitudes of the oscillations of functions z, (T) and z, (T). The form and the frequency
of the oscillations depend upon the function

{

= {z(0)as.

As ¢t — oo we have @ (¢) ~ z4l, hence for the independent variable T the oscilla-
tion period tends to zero as T-tends to the boundary of the domain.

4. Let us consider the critical case when the singular points of system (1. 3) are cen-
ters, In this case z (¢) and y () are periodic functions, By virtue of the symmeuy of
the phase wajectories the function y (z) has a mean value of zero over the period, con-
sequently, the r(z) determined by formula (3, 3) is a periodic function, If ¥ (£) is
bounded, r (¢) is a strictly positive function, In this case the function T(¢)from formula
(3.4) is smictly monotonic and can be represented as

To
T =gt+o@) g={ =%

0

—~

)

where ¢ (7) is some periodic function with the same period 7', as r (). In this case
the r (T) obtained in parametric form from formulas (3, 3),(3.4) is a periodic function
with period T; = gT,.

Indeed, let us fix an arbitrary 7,. Because 7 (¢) is unbounded and strictly monotonic,
we can find a unique ¢, = ¢, (1,); for this value ¢, we find r (¢,). Consider the values
of the parameter ¢, = t, — To. Then r(t)) = r (t,), T, = g (ty + To) — @ (to) = To —
T,. Hence we obtain the equality r (t—+ 7,) = r (1) for any 7,
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It is obvious that period I', depends on the choice of the closed trajectory of system
(1.3) on the ( xy )-plane, The function 7 (T) acquires a simpler form when the closed
trajectory coincides with the y-axis, In this case r (1) satisfies the equation d°r /
dt® + 2r° = 0; its general solution can be expressed in terms of elliptic functions,
Although the function r (1) has been obtained as periodic, the functions z; (T) and
Z, (7) are,in general, only almost periodic, This follows from the fact that a product
ot periodic functions with incommensurate periods occurs in the right-band sides of
(3.2) and (3,1),

6, Example, Insystem (1.1) let a = 0.2, § = 0.8, then
P = arcsin (@ / V 2% + 39) = 76°

Consequently, the singular points of system (1, 3) are foci and are located in the first
and third quadrants, The domain of function r(t) is of order Z ~ 1/ y, = 12, on the
boundaries of the domain r (1) has first-order poles, The local extrema can be found
by the approximate formula

wet V(3] - (5 1]
Here z,. yo are the coordinates of the singular point, In the case being considered
2o = 0.9, ¥o = 0.U8, hence, & = 3.

Thus, we have ascertained the nature of the behavior of the solution of system (1.1)
as a function of the values of the parameters occurring in the right-hand side, We
have established that the system has a bounded general solution defined for t=(—°,
o) only in exceptional cases when equality-type conditions are imposed on the para-
meters, In all remaining cases the system has an unbounded general solution defined

on a finite interval, whose nature for any initial conditions is compietely determined
by the phase wajectory pattern of system (1, 3).

In conclusion the author thanks A, M, Molchanov for constant attention and help with
the work,
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