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We study the properties of the solutions of one two-frequency system in the 
whole space. We establish the correspondence between its solutions and the 
phase trajectories of an autonomous second-order syltem obtained from the 
original one by using its group properties. The original system can be treated 
as a model for the study of the phenomena taking place in multlfrequency sys- 
terns under resonance. This paper is closely related to the investigations in [I]. 

I .  We consider the following auwnomous system of differential equations : 

dz~ / dz = ~ ,  dz3 / dT - -  (z~ ~ ~ ~ )  (~:= ÷ a~) 

dz,  / d'~ = z,, dr., / d~ = (zz 2 + r~ ~) (Bzs -- ~z,) (t .  t)  
(~' + B 2 ~ O) 

System ( I . I )  is evolutionary and describes the behavior of the original systems at times 
t - -  O ( y ~ ' - l ) .  Here system (1.1) will be transformed W a form which permits us to 
investigate it in the whole phase space. By a direc~ check we convince otttselves that 
(1.1)  is invariant relative to a group of transformations, namely, slmult~,neous rotation 
through angle ~ in the ( z~z~ }- and ( ;4:, s )-pLanes. Consequently. the number of un- 
known functions in (1.1) can be diminished by one [2]. for which we need to find the 
invariants of the infinitesimal operator of the group and to adopt them as the new vari-  
ables. For the group indicated the operator and its invariants have the form 

~1 = z~ 0 zl 0 0 O 

We introduce the new tt,~kno~m functions 

r p = Vz3  ÷ z;-, 

ZIZ2- ~'97-.4 

z,z~ - , ,~ ,  (1.2) 
tg ~ = zlz~ ~- z2:a 

For the mapping of space Z into the space of r,  p, q~ w be single-valued we set 
r :~  0, p ~ 0, cp ~ [0, 2h i .  Then, i f  r (T) or p (v) vanish at some instant, q~ (T) 
changes by ~ by a jump at this point, Transformation (1.2) is continuous at the remain-  
ing points of the phase space. In the new variables system (1.1) is invariant relative to 
the following group of dilations : 

r '=Zr ,  p'=~=p, T'=~-IT (~>0) 

We introduce new variables R = p / r ~, d t  = rd'c and we pass to the Cartesian coor- 
dinams x = R sin rp, y = R cos ~. Then sysmm (1.1) takes the form 

d x  / d t  = a - -  3 x y ,  d y  / d t  = ~ ~ x 2 - 2 y  2 ( t .3 )  

27 
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Thus, as a corollary of ~ t e m  (I .  I) we have obtained the second-order sysmm (I .  3) 
whose phase trajec~ries are investigated below by standard methods. 

2 .  If in system (1.3) we make a scale transformation of the variables x - -  x .  x ' ,  
y = y . y ' ,  t = t . t ' ,  then by an appropriate choice of the commnts x . ,  y . ,  t .  we can 
decrease the number of paramemn in the right hand side of (1.3) to one. Therefore,  
below, in those cases when this is convenient, instead of the ct and 3 occun~ng in (1.3) 
we shall use the notation sin ~ and cos ~.  We note that sysmm (1.3) remains invari- 
ant under the subsUturion z --~ (-- x), y --~ (-- y), t ~ (-- t). Consequently, the 
phase trajectory pattern is symmemcal about the origin, but the direction of motion 
along s y m m e t r i c  trajecr~/es is different, therefore, if a singular point is stable, the one 
symmetric to it is unstable. 

Analysis shows that two singular poinu are located in the finite part of the plane for 
all values of ~ and ~ ( ~  -~- ~2 ~= 0) ,  and for a ~ 0 the ringular poinu lie in the 
first and ~ird quadrants, while for u ~ 0 , in the second and fourth quadrants, A sin- 
gular point located in the upper pan of the phase plane is always stable, while in r~e 
lower part ~ point is unstable. Depending on the values of parameter ~ ~ [0, 2~] 
the singular points are of the following types : for ~ ~ [0, ~o) and ~ ~ (2~ - -  ~0, 
2rt] they are nodes, for ~ - -  ~0 and ~ = 2~ - -  ~o they are logarithmic nodes, for 

~ (~0, r~) and ~ ~ (.~, 2~ - - ~ o )  they are loci, and for ~ = ~ they are centers. 
Here  ~o = arctg (61/'6 / 47) ~ i 8  °. 

On the ( xy  )-plane, fc~ any value of ~ the singular points are located on the closed 

cu rve  4yo' -t- 5xo~Yo ~ + Xo' = i 

Sm'TO~Xiing the origin, meeeove~, for I Yo [ ~ 2 V'6"[ Xo [ the sin gu~lar point is a node. 
for} uo I = 2 ) f ~  I xo I it ~ a l o g ~ - a c  node. f ~  I yo I < 2 ] /~]  xo l it is a focus, 
and for Y0 ---- 0 it is a ccnmr. The points at infinity arc not ~ationary singul~ points 
for system (1.3), but f ~  any value of paramete~ ~ ~ exists a unique trajectory p ~ -  
sing through ~ poim at infinity located at the "end" of the y -axis. When sin ~p #= 0 
r~is phase trajectory is asymptotically relxesenrable, as y --~ -4- co,  by the formula 

x = (sin ~P) / 5y + O (1 / ya) ( 2 . i )  

For sin ~ ---- 0 this trajectory coincides identically with the y -axis, 
The study of the singular points allows us m obtain the phase trajectory pattern only 

locally in the neighborhood of these points. It is convenient to begin to ascertain the 
behavios of the phase trajectories on the whole plane with the case ~ = :~ which co~- 
responds to c~ = 0, ~ < 0. In this case the general integral of ~/s~em (1.3) has the 
form 

x ~ + y~ - -  ~ / 2 = cx'/" (2.2) 

From (2. 2) it follows that in the case ~ = ~ the phase plane x y  of system (1.3) is 
entirely filled by closed nes~d cm'ves sm'rounding the singular points. The y-axis  is a 
closed trajecr~a~/ passing through the poinf at infinity. In Fig. 1 a we show the qualita- 
tive behavior of the phase trajecr~ies in this case (reCall that the trajectories are gym- 
metric about the origin, but that the directions of morion on symmetric ~ajecr~-les are 
opposite). 

In the general case of ~ n system (1.3) is not integrable, and to construct its full 
phase pattern it is necessary to clear up the question of the existence of limit cycles in 
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it [3]. From the nature of the singular points of system (1.3) it follows that any of the 
limit cycles, if they exist, can surround only one of the singular points. There will not 
automatically be llrnit cycles around a singular point if we succeed in showing that the 
t~ajectory passing through the point at infinity tends to this singular point as t --, + 

i x 

y y ~  ~ c q d 

Fig. 1 

or as t--. - -  o~. To prove this we apply a method based on the use of Liapunov function 
which we will c o n d u c t  using the general integral (2.2) found for ~ = ~. Let an equa- 
tion H (x, y, c) = 0 yield a family of simple closed nonintenecting curves surrounding 
a singular point and filling up some region G. Let z == z (t), y = y (t) be a t~ajectory 
located in G. We consider the function H (z (t), y (tL c). If its derivative computed 
relative to system (1.3) tus~ out to be negative definite in G, then any trajectory fal- 
ling into this region rends to the singular point as t - ,  + oo. The proof will be complete 
if we show that the ~ajectory passing through [he point at infinity falls into G. 

Let us set a ~ 0, then one of the system's singular points lies in the ~ quadrant. 
If in (I .  3) we ~anslate the origin to the singular point, we obtain 

dx" / dt  -~- --3gox" --  3y" --  3x"y (2.3) 
dg" / d t  = 2x" - -  4goy" -~- z "t - -  2g "2 

Here Y0 >1 0 is the ordinate of the sy~em's singular point. For go ---- 0 system (2. 3) has 
the general integral 

II" ~ x "~" + 2z" --}-, g"~ ÷ 3/= = c (z" -+- 1)'" (c ~ 3/.,) 

This family of closed nonintersecting curves surrounds the origin and fills the halfplane 
x" > -- I. Let us find the total derivative of H" relative to Eqs. (2.3), 

d H "  m 2u, (x"  .z. 2) (x "~ + 2y "2) 
IV  - -  dt  

~x" -v- i) ,'~ 

Obviously, W < 0 for z" ~ -- 1, y E (-- ~ ,  ~).  By the same token we have shown 
that any ~ajectory of system (I .  3) falling into the right halfplane tends to the singular 
point. From formula (2.1) it follows that the trajectccy passing through the point at 
infinity necessarily falls into the rlghl haifplane. The proof of the absence of limit 
cycles in system (I .  3) when ~ -~- a is completed. 

We can now describe the pattern of the behavior of the phase trajectories of system 
(1, 3 ) .  As t ~ -~- ~ all trajectories approach the singular point located in the upper 
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halfplane, while as t --,- - -  ~ ,  they approach the point in the lower halfplane. Figure 
lb  shows the behavior of the trajectories for ~ ~ 0. Figure l c  shows the general form 
of ~ajectory behavior in the c u e  of a node. The behavior of the phase trajeccor/es 
when the singular points are loci is shown in Fig. ld .  The number of zeros of function 
y (t) corresponding to an arbitrarily taken phase uajecr~¢7, differs by no more than four 
from the number of points of intersection with the x oax~ of the phase ~ajecr~ 'y  passing 
through the origin. From linear theory we can obtain an estimate for the number of 
intersections with the x-axis  of the Integral trajectory, passing through the origin. 

2 ~ /V~--FR--[ctg~l as , - ~  
Let m describe the behavior of functions x (t), y (t) when the singular points of sys- 

mm (1.3) are not cenmrs. In this case all trajectories going from one singular point co 
the other and remaining in the finite pan of the phase plane are defined for t ~ ( - -  oo, 
c¢) and have the ¢oordinare.s of the singular po/nts as their Limit values. The funcr~om 
x (t), y (t) corresponding to the phase trajectory passing through the point at infinity 
(it  is not a singular point for system (1.3))  have, in a neighborhood of this point, the fol .  
lowing asympcotlc representation: 

y ~ l / ,  ( t--t0) -1, x ~ L r s ~  (t--to) (2.4): 

C omequently, they also are defined fc~ t ~ ( 4  oc, c¢), and y (t) has a first-order 
pole at t ~ t 0 .  

8 ,  From system ( l .  3) we establish the connection of the functiom z I (~) and z 2 (~) 
of system (1.1) with the functions x (t) and y (t) whose behavior is now known. Cou- 

sider the identity (zlZ + z2Z) z4 = (zxz4 + z~s )  z l  - -  (zlzs - -  z2z4) z.. 

It is valid for arbi~ary z~, z~, z s, z4. If, however, these functlom are solut/om of system 
(1.1), then with the aid of the ~amfc~nac/om considered in Sect.1 we can obtain the 

following equation for z 1 (t): dr1 / dt  ---- YZl ~ x ] / r  z - -  zx ~ 

The general solution of this equation has the form 
t 

Zl 

Analogomly, from the identity 
(zl~ + z~) z~ = (z:~ + z : , )  z~ + (zlz~ - z:~) Zl 

we obtain 
z~ = r ( t ) c o s ( ! x ( O ) d ~  + c ~ )  (3.2) 

From f ~ u u l a s  (3.1), (3.2) it follows that the behavior of the solutions of system (1.1) 
is ¢omplemly demrmined by the ftmctiom x (t) and y (t) given by (1.3) if we know 
the connection between t and 1:, defined by ~he equation dt = rd'c. 

Knowing the behavior of y (t) from (1.3), we can ascertain the natt~e of r ( t ) ,  
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Hence it follows that for bounded y (t) the function r (t) is s~ict ly  positive, while i f  
y (t) has a s ingular i~ of  form (2. 4) at t = to , then r (t) ~ ~/I t - -  t o J in the neigh-  
borhood of  this point. From (3 .3)  it follows that for y (t) , ~  c o n s t  the function r (t) 
grows exponential ly as t -*- -4- ~ .  It  is obvious that r (t) has local  e x ~ m a  at the 
poin~ where the phase ~ a j e c r ~ /  intersec~ the x -ax i s .  

The function T (t) is determi~led by the formula 
t 

0 

Hence it follows that T (t) defined for t ~ ( - -  ~¢, ~¢), increases su'ictly monotonic-  
ally, and, i f  Y (t) ~ c o n s t ,  the function T (t) is bounded, where its range of  variat ion 
is of  order L --~ J / Y0 (Y0 > 0). In the neighborhood of  the point t ----- to, where 
r (t) vanishes, we have T ~ ~ ~/[ t - -  t o I" Consequently. the inverse function t (T) 
defined on a finite inmrval,  is monotonic  and unbounded. Hence if  follows that if  
y (t) .~_-~- c o n s t ,  the composite func~on r It (T)] is nonnegative,  is defined on a finite 
inr~,rval, becomes -4- ~ (these are first order-poles) on the boundaries of  its domain, 
and has as many local  e x ~ e m a  as the times the phase trajecWry y (t) intersecls the 
z - ax l s .  I f  r (T0) -~- 0,  in the neighborhood of  ~ e  point T == I: 0 we have r (T) N 
IT --Tol .  

If y (t) ----- Yo ---- Const ,  the function r (T) can be written out in expl ic i t  form, 

r (T) = r0 / (1 - -  VoroT) 

As we see f~om formulas (3 .2)  and (3 .1)  the function r (T) describes the change in the 
amplitl~des of the oscillatlom of func~ons z I (T) and z~ (T). The form and the frequency 

of the c$cil lat iom depend upon the function 
t 

• = ~z(e)dO. 
0 

As t ---* oo we have (D (t) --~ Xo t ,  hence for the independent variable T the osci l la .  
t ion period tends to zero as I:. tends ~o the boundary of  the domain.  

4 ,  Le~ us consider fne cr i t ical  case when the singular points of  system (1. 3) are cen-  
ters. In r~is case x (t) and y (t) are periodic functions. By virtue of  the symmetry of  
r~ie phase trajectories the function ~/(t) has a mean value of  zero over the period, con-  
sequently, the r (t) determined by f~xmula (3 .3)  is a pe~odic  function* If  y (t) is 
bounded, r (t) is a s~rictly positive function. In this case the functionT(t)from formula 

(3.4) is su'iczly monotonic and can be represented as 
T~ 

T (t) = g t  + q~ (t) ,  g ---- z (,~) 
0 

where ~ (t) is some periodic function with the same period To as r (t). In this case 

the r (T) obtained in parametric form from formulas (3.3),(3.4) is a periodic function 

with period T z = gT o. 

Indeed, let us fix an arbitrary %. Because • (t) is unbounded and su'ictly monotonic. 

we can find a unique to = to (%); for this value to we find r (to). Consider the values 
of the parameter t~ = to -e- To. Then r (t~) = r (to), "~ = g (to ~ To) ~- ¢p (to) = % 

T~. Hence we obtain the equality r (z -- T~) = r (~) for any z. 
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It is obvious that period T z depends on the choice of the closed trajectory of ~/stem 
(1.3) on the ( my )-plane. The function r (~) acquires a simpler form when the closed 
trajectory coincides with the y-axis. In this case r (~) satisfies the equation d~r / 
d~ ~ -~- 2r ~ = 0; its general solution can be expressed in terms of elliptic functions. 
Although the function r (~) has been obtained as periodic, the functions z I (T) and 
so. (T) are, in general, only almost periodic. This follows from the fact that a product 
ot periodic functions with incommensurate periods occurs in the right-band sides of 
(3.2) and (3.1). 

8. gxample. In system (I.I) let a = 0.2, ~ = 0.8, then 

=ffi arcsin (~ / ] / ' ~ )  == 76" 

Consequently, the singular points of sTstem (1.3) are loci and are located in the flrJt 
and third quadrants. The domain of function r (T) i$ of order L ~, I / go = 12, on the 
boundaries of the domain r (T) has first-order poles. The local e x ~ m a  can be found 
by the approximate formula 

v \ Yo / L\ Y0 / 

Here x0, Y0 are the coordinates of the singular point. In the case being considered 
Zo = 0.9, •o ffi o.ots, hence, N = 3. 

Thus, we have ascertained the natuze of the behavior of the solution of system (1.1) 
as a funczion of the values of the parameters occurring in the right-hand side. We 
have established that the system has a bounded general solution defined for • ~ ( - -  oo, 
oo ) only in exceptional cases when equal i ty-~pe conditions are imposed on the para- 
meter~ In all remaining cases the ~/1rem has an unbounded general solution defined 
on a finite interval, whose natt~e for any initial conditions is completely determined 
by the phase trajectory pattern of system (1.3) .  

In conclusion the author thanks A. M. Molchanov for constant at-.ention and help with 
the work. 
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